Raster Analysis

Dr. Tarendra Lakhankar

- Surface
- GRID the ArcInfo raster type
- Image (generic) usually relates to satellite imagery
- Image (.img) Raster data structure used by Erdas Imagine, a common image-processing software package
- Array more technical term associated with how raster data are managed by computer programmers
- Matrix rarely used because of it's association with mathematics, but it does occasionally come up

• The raster data model represents the Earth's surface as an **array** of two-dimensional grid cells, with each cell having an associated value:

- The size of the cells in the raster data model determines the resolution at which features can be represented
- The resolution can have an effect on which features are represented in what locations:

- Raster GIS is often used because:
 - Raster is better suited for spatially continuous data like elevations
 - Raster is better for creating visualizations and modeling environmental phenomena
 - Other continuous data may include: air pressure, temperature, salinity, etc..
 - Raster data is a simplified realization of the world, and allows for fast and efficient processing

- Predict fate of pollutants in the atmosphere
- The spread of disease
- Animal migrations
- Crop yields
- EPA hazard analysis of urban superfund sites
- Market analysis
- Watershed analysis
- Terrain analysis

Raster analytical functions are performed in a number of different ways:

- The Spatial Analyst toolbar
- ArcToolbox tools
- Scripting
- Command line

Types of Raster Analysis

- Math
- Distance
- Surface analysis
- Extraction
- Change cell values
- Statistical Analysis
- Conditional
- Weighted overlay

- There is a trade-off between spatial resolution and data storage when we use the raster data model, e.g.
 - 60 km satellite image with 10m cell size
 - 6000 X 6000 = 36,000,000 cells
 - 1 byte of attribute value (i.e. values 0-255)
 - ~36 MB of disk storage!
 - 60 km satellite image with 100m cell size
 - 600 x 600 = 360,000 cells
 - 360 KB of data... 1% the size of the other one

- Quite often, data in the vector and raster models need to be used together
- One dataset is generally **transformed** to be represented in the other model, introducing **distortion**.

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc.

Map Algebra

Map Algebra

- Map algebra is a cell by cell combination of raster layers using mathematical operations
- Basic Mathematical Operations
 - Addition, subtraction, division, max, min, virtually any mathematical operation you would find in an Excel spreadsheet
- Strong analytical functions

- Some Map Algebra Commands in ARC/INFO
- Outgrid = grid1 + grid2
- Outgrid = grid1 * 2
- Outgrid = sin(grid1)
- Outgrid = costallocation(sourcegrid, costgrid, accumgrid, backgrid)
- Outgrid = con(>5 (ingrid1),0,ingrid1)

Non-zero values are "true", zero values are "false" N = null values

Input

1	3	1	1
0	Ν	2	-1
1	2	5	0
0	1	Ν	Ν

0	1	0	9
0	5	2	5
0	2	Ν	2
0	-3	4	8

Output

Ξ

Non-zero values are "true", zero values are "false" N = null values

OR

1	3	1	1
0	Ζ	2	-1
1	2	5	0
0	1	Ν	Ν

0	1	0	9
0	5	2	5
0	2	Ν	2
0	-3	4	8

=

1	1	1	1
0	Ν	1	1
1	1	Ν	1
0	1	Ζ	Ζ

Logical Operations: NOT

1	3	1	1	
0	Z	2	-1	_
1	2	5	0	_
0	1	Ν	Ν	

NOT

More Local Functions – logical comparisons

Input

0	1	0	9
0	5	2	5
0	2	Ν	2
0	-3	4	8

Output

0	0	0	1
0	Z	0	1
0	0	Z	1
0	0	Ν	Ν

equal Ν -3

=

=

0	0	0	0
1	Ν	1	0
0	1	Ν	0
1	0	Ν	Z

An Example of a Logical Operation

Reclassification

Conditional Function

Nested Functions

Raster Calculator

DEM - elevation	1	7	8	9	=	\diamond	And
Distance to recreation fac Distance to schools	1	4	5	6	>	>=	Or
Reclass of Distance to cl usgslu343	•	1	2	3	<	<=	Xor
4 N	+	1	0		1	1	Not
			1.	[sloode]	0.25 ₊ 1	DEM .	10
[Distance to recreation facil elevation] * 0.125+[Land us	ities] * 0. e] * 0.12	.5+[Dista 25	ince to :	scribbisj	0.234[DEM -	

Raster Operations

Raster Operations

Raster operations can be local, neighborhood (focal), zonal, or global

Local: Operate on individual cells, oneat-a-time, relative to the ones directly "below"; e.g., add layers together or subtract a number from each cell

Neighborhood (focal): "Moving window" operates on a cell, considering its immediate neighbors

Global: Operate the same on all cells; e.g., calculate all cells to the maximum value in the map

Local Operations

- Work on single cells, one after another, value assigned to a cell depends on this cell only
- Examples:
 - arithmetic operations with a constant, or with another grid
 - also logical operations, comparisons (min, max, majority, minority, variety, etc.) – same location but different layers
 - Reclassification

Local Operations

Focal Operations

- Assign data value to a cell based on its neighborhood (variously defined)
- Neighborhood: a set of locations each of which bears a specified distance and/or directional relationship to a particular location called the neighborhood focus (D. Tomlin)
 - distance and directional neighbors
 - immediate and extended neighbors
 - metric and topological neighbors
 - neighbors of points, lines, areas...

Define Neighborhoods: Shapes

Neighborhood Statistics in Spatial Analyst

- shape of neighborhood: | Circle | Rectangle | Doughnut | Wedge | Star
- size of neighborhood: radius (circle), inner and outer radius (doughnut), radius, start and end angles (wedge), width and height (rectangle)
- Operation: | Minimum | Maximum | | Mean | Median | Sum | Range | Standard Dev. | Majority | Minority | Variety |

Define Neighborhood: Moving Window

Moving Window:

A "window": cells used to specify the input values for an operation.

Focal Operations

GIS Solution to Margin Erosion

Neighborhood Operations

Slope

Surface scanning window

Output slope raster (in degrees)

The slope algorithm can also be interpreted as:

slope_degrees = ATAN (rise_run) * 57.29578

where:

 $rise_run = \sqrt{\left[\frac{dz}{dx}\right]^2 + \left[\frac{dz}{dy}\right]^2}$

The rate of change in the x direction for cell e is calculated with the following algorithm:

[dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cellsize)

The rate of change in the y direction for cell e is calculated with the following algorithm:

[dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cellsize)

Aspect

 Aspect identifies the downslope direction of the maximum rate of change in value from each cell to its neighbors.

Figure 11-7: Aspect may be reported as an azimuth angle, measured clockwise in degrees from north.

Input elevation raster

Output aspect raster

Neighborhood Operations

- smoothing moving averaging
- edge detection
- Grade (slope)
- Orient (aspect)
- Profile
- High pass filter
- assessing variety, etc.

Noise Highlight (high-pass filter)

	١r	iput	La	yer	WIT	rn	no	se								
\frown	1065	1068	929	864	960	1113	974	896	890	841	759	719	705	696	720	708
kannal for	1038	963	947	950	999	1021	1011	1015	995	1044	870	773	734	703	676	684
high-pass filter	1142	1005	1151	310	1117	1056	1007	1002	902	954	935	913	789	756	724	700
1 -1 -1 -1	1116	1114	1270	1165	1097	1025	922	917	821	829	860	838	807	810	758	760
$\frac{-}{9}$ * $\frac{-1}{-1}$ $\frac{9}{-1}$	1275	1170	1295	1114	1009	942	953	847	835	729	738	797	723	718	694	670
/	1441	1263	1196	1055	913	869	829	771	736	765	766	688	694	1676	684	698
	1348	2900	1056	969	948	951	940	867	818	863	784	732	704	733	776	804
(1377	1238	1122	1019	1089	950	956	896	2000	800	760	698	779	867	896	744
*	1489	1320	1188	1152	1050	942	922	952	815	841	721	780	852	28	845	738
/ (-1)*1065 + \	1432	1415	1196	1100	1001	974	924	911	914	756	809	861	898	830	746	710
(-1)*1068 +	1412	1474	1240	1100	1001	982	873	835	829	853	931	937	845	706	685	680
(-1)*1038 +	1493	1368	1201	1090	1064	970	902	902	958	952	1015	841	782	803	786	711
(9)*963)+ (-1)*947 +	1437	1407	118	1145	1070	1107	982	1047	1077	1052	954	884	44	940	828	771
(-1)*1142 +	1349	1369	1267	1247	1194	1196	1077	1214	1145	999	906	894	1024	1046	923	862
(-1)*1151	1319	1292	1378	1400	1367	1276	1162	1088	961	930	872	985	1010	1178	1148	1000
\/														_		
\ <u> </u>						sp	ikes	;			F	oits				
\ <u> </u>	0	upu	t La	aye	r	sp	ikes	:			F	oits				
9 / = 35.7	0	upu	t La	aye	r	sp	oikes	: 			F	oits				
9 / = 35.7	0	upu 35	† La 142	aye	177	sp 105	112	162	156	250	99	59	61	58	43	
9 / = 35.7	0	upu (35) 33	t La 142 292	141 -657	177 270	sp 105 145	112 121	162 158	156 60	250 147	99 148	59 179	61 85	58 89	43 74	
9 / = 35.7	0	upu 35 33 66	t Lo 142 292 345	141 -657 235	177 270 237	sp 105 145 124	112 121 61	162 158 107	156 60 41	250 147 76	99 148 111	59 179	61 85 102	58 89 146	43 74 110	
9 / = 35.7	0	35 33 66 62	+ La 142 292 345 256	141 -657 235 114	177 270 237 100	sp 105 145 124 95	112 121 61	162 158 107 93	156 60 41 122	250 147 76 23	99 148 111 41	59 179 108 117	61 85 102 -58	58 89 146 -43	43 74 110 -59	
9 / = 35.7	0	35 33 66 62 -35	+ Lo 142 292 345 256 -7	141 -657 235 114 110	177 270 237 100 40	sp 105 145 124 95 37	112 121 61 161 35	162 158 107 93 12	156 60 41 122 14	250 147 76 23 68	99 148 111 41 88	59 179 108 117 28	61 85 102 -58 -59	58 89 146 -43	43 74 110 -59 -69	
9 /		35 33 66 62 -35	+ Lo 142 292 345 256 -7 -140	141 -657 235 114 110 35	177 270 237 100 40 79	Sp 105 145 124 95 37 118	112 121 61 161 35 152	162 158 107 93 12 -16	156 60 41 122 14 -38	250 147 76 23 68 37	99 148 111 41 88 109	59 179 108 117 28 79	61 85 102 -58 -59	58 89 146 -43 1039 -54	43 74 110 -59 -69 -14	
9 /		35 33 66 62 -35 1784 -74	+ Lo 142 292 345 256 -7 -140 -83	141 -657 235 114 110 35 66	1777 2700 2337 1000 400 799 2002	sp 105 145 124 95 37 118 83	112 121 61 161 35 152 131	162 158 107 93 12 -16 -23	156 60 41 122 14 -38 123 8	250 147 76 23 68 37 -45	99 148 111 41 88 109 69	59 179 108 117 28 79 18	61 85 102 -58 -59 -59 179	58 89 146 -43 1039 -54 243	43 74 110 -59 -69 -14 281	
9 / = 35.7		UPU 35 33 66 62 -35 1784 -74 158	t La 142 292 345 256 -7 -140 -83 125	141 -657 235 114 110 35 66 178	1777 2700 2377 1000 400 799 2022 1335	Sp 105 145 124 95 37 118 83 68	112 121 161 152 131 88	162 158 107 93 12 -16 -23 25	156 60 41 122 14 -38 1238 -82	250 147 76 23 68 37 -45 -1	99 148 111 41 88 109 69 20	59 179 108 117 28 79 18 71	61 85 102 -58 -59 179 214	58 89 146 -43 1039 -54 243 -718	43 74 110 -59 -69 -14 281 2227	
9 / = 35.7		35 33 66 62 -35 1784 -74 158 220	+ La 142 292 345 256 -7 -140 -83 125 86	141 -657 235 114 110 35 66 178 108	1777 2700 2377 1000 400 799 2022 1355 78	Sp 105 145 124 95 37 118 83 68 119	112 121 161 161 152 131 88 102	162 158 107 93 12 -16 -23 25 126	156 60 41 122 14 -38 1238 -82 159	250 147 76 23 68 37 -45 -1 10	999 1488 1111 411 888 1099 699 200 666	59 179 108 117 28 79 18 71 108	61 85 102 -58 -59 179 214 249	58 89 146 -43 1039 -54 243 243 207	43 74 110 -59 -69 -14 281 227 165	
9 / = 35.7		33 66 62 -35 1784 -74 158 220 278	+ Lo 142 292 345 256 -7 -140 -83 125 86 135	141 -657 235 114 110 35 66 178 108 111	1777 2700 2377 1000 400 799 2002 1335 788 800	Sp 105 145 124 95 37 118 83 68 119 125	112 121 61 161 35 152 131 88 102 50	162 158 107 93 12 -16 -23 25 126 33	156 60 41 122 14 -38 1238 -82 159 42	250 147 76 23 68 37 -45 -1 10 57	999 148 1111 411 888 1099 699 200 666 1500	59 179 108 117 28 79 18 71 108 161	61 85 102 -58 -59 179 214 249 105	58 89 146 -43 1039 -54 243 -718 207 -3	43 74 110 -59 -69 -14 281 227 165 21	
9		35) 33 66 62 -35 1784 -74 158 220 278 281	t Lo 142 292 345 256 -7 -140 -83 125 86 135 207	141 -657 235 114 110 35 66 178 108 111 207	1777 2700 2377 1000 400 799 2022 1355 788 800 1223	Sp 105 145 124 95 37 118 83 68 119 125 83	112 121 161 161 35 152 131 88 102 50 46	162 158 107 93 12 -16 -23 25 126 33 68	156 60 41 122 14 -38 1238 -82 159 42 119	250 147 76 23 68 37 -45 -1 10 57 99	999 148 1111 41 88 109 69 20 66 150 192	59 59 179 108 117 28 79 18 79 18 71 108 161 130	61 85 102 -58 -59 179 214 249 105 115	58 89 146 -43 1039 -54 243 -718 207 -3 179	43 74 110 -59 -69 -14 281 227 165 21 105	
9		35) 33 66 62 -35 1784 158 220 278 281 340	+ La 142 292 345 256 -7 -140 -83 125 86 135 207 -1004	141 -657 235 114 110 35 66 178 108 111 207 228	1777 2700 2377 1000 400 799 2022 1355 788 800 1223 688	\$\$ 105 145 124 95 37 118 83 68 119 125 83 167	112 121 61 161 35 152 131 88 102 50 46 47	162 158 107 93 12 -16 -23 25 126 33 68 129	156 60 41 122 14 -38 1238 -82 159 42 119 158	250 147 76 23 68 37 -45 -1 10 57 99 162	99 148 111 41 88 109 69 20 66 150 192 115	59 179 108 117 28 79 18 71 108 161 130	61 85 102 -58 -59 214 249 105 115 -758	58 89 146 -43 1039 -54 243 -718 207 -3 179 247	43 74 110 -59 -69 -14 281 227 165 21 105 67	
9		35 33 66 62 -35 1784 -74 158 220 278 281 340 306	+ Lo 142 292 345 256 -7 -140 -83 125 86 135 207 -1004 227 -	141 -657 235 114 110 35 66 178 108 111 207 228 253	1777 2700 2377 1000 400 799 2022 1355 788 800 1233 688 104	\$\$ 105 145 124 95 37 118 83 68 119 125 83 167 169	112 121 61 161 35 152 131 88 102 50 46 47 69	162 158 107 93 12 -16 -23 25 126 33 68 129 265	156 60 41 122 14 -38 1238 -82 159 42 119 158 215	250 147 76 23 68 37 -45 -1 10 57 99 162 121	99 148 111 41 88 109 69 20 66 150 192 115 64	59 179 108 117 28 79 18 71 108 161 130 166 151	61 85 102 -58 -59 214 249 105 115 -758 248	58 89 146 -43 -43 -243 -718 207 -3 179 247 257	43 74 110 -59 -14 281 227 165 21 05 67 59	

Noise Reduction (low-pass)

Spatial Filtering - Low and High Frequency Detail and Edges

543 Composite Result of ENVI 15x15 High Pass Filter – Edge Finding High-Pass filters emphasize high texture, low pass filters suppress, or minimize texture

Directional Edge Detection

Ν

2

5

3

7

-1

0

N

• Make a new map of the area of interest with cell value = 1, others cell value = 0 or NODATA

Multiply by existing map

Sou	rce			
1	3	4	7	
6	3	2	-1	Clip
1	2	5	0	enp
0	1	3	2	

Tem	Output					
0	0	0	1		Ν	Ν
0	0	1	1	-	Ν	Ν
0	1	1	1	-	Ν	2
0	1	1	0		Ν	1

• Con: Condition, a command in ArcGIS

If (layer1>5) then Output = 1

else

Output = 0

Con(layer1>5, 1, 0)

End if

Nested Con operation: Con(layer1>5, Con(Layer1>10,2,1), 0)

If (layer1>5) then if (layer1>10) then output = 2 else output =1 end if Else output = 0 End if

3	4	7
5	11	4
4	2	3

0	0	1
0	2	0
0	0	0

CON is used for re-classification

- Contain the minimum cost of reaching cells in a layer from one or more source cells.
- The cost may be expressed in different units: \$ money, time, or other units of merit.
- Cost = distance * cost per unit of distance (frication surface)
 - The distance from a source cell is combined with a cost per unit of distance (variable or fixed) to calculate a travel cost.
- Think simple:

Distances—in cell dimension units— are measured to/from cell centers and calculated using RMS formulae that keep values positive.

Example

- Another way to calculate travel costs
- Cell values of a "friction" surface represent the (*variable*) cost per unit travel distance for crossing each cell.
- Define cell friction on elevation, land cover, etc. (or even friction: icy slopes!)

Cost Surface: varied cost

Cost of a new power line

Land Use	Friction or Cost	Explanation
Agriculture	1	Base Cost
Deciduous Forest	4	Cut trees, removed and sold
Coniferous Forest	5	Cut trees, less return
Urban	1200	Conversion very expensive
Pavement	1	Base Cost
Suburban	1000	See Urban
Barren/Gravel	1	Base Cost

Cost Surface

1000	1000	1000	5	11	5	5	4	4	4	4
4	1	4	4	1	5	5	4	4	4	4
4	1	1	1	1	5	5	4	4	4	4
4	1	15	5	1	5	5	5	5	5	5
4	1	5	5	1	5	5	5	5	5	5
1000		5	5	1	5	1000	5	5	5	4
1	1	5	4	4	1000	1000	1000	4	4	4
1	h	1000	5	5	1000	5	1000	1	1000	1000
1	5	1000	1000	1000	1000	1	1	1000	1000	1000
1	5	1000	1000	1000	5	1	Power Plant	1	1000	1000
1/	5	1000	1000	1000	4	1	1	1	1000	1

Existing Trunk Power line

Reclassify settings

Reclassify tool to query for high heart-attack densities

4	🗈 🚵 😤 🖽 Local Search				
4-					
A	Maps Data Tools	1			
R	eclassify				
Se	arch returned 13 items. <u>Help</u>				
Reclassify (Spatial Analyst) Reclassifies (or changes) the values i toolboxes\system toolboxes\3d analy					
~	Reclassify (Spatial Analyst) Reclassifies (or changes) the values i toolboxes\system toolboxes\spatial a				
~	Reclass by Table (Spatial Analyst) Reclassifies or changes the values of t toolboxes\system toolboxes\3d analy				
4	Reclass by Table (Spatial Analyst) Reclassifies or changes the values of t toolboxes\system toolboxes\spatial a				
~	Reclass by ASCII File (Spatial Analyst Reclassifies or changes the values of t toolboxes\system toolboxes\3d analy				
	1	•			

🔨 Reclassify		
Input raster		
HeartAttack		🗾 🖻
Reclass field		
Value		*
Reclassification		
Old values 0 - 0.000004 0.000004 - 0.00003	New values 0 1	Classify
NoData	NoData	Unique
	~	Add Entry Delete Entries
Load Save	Reverse New Values	Precision
CUESDIBress/CIST1/MuEvers	ices\Chapter11\Chapter11_adb\	
Change missing values to N	loData (optional)	
	K Cancel Envi	ronments Show Help >>

Using hillshade

To make a raster layer appear 3D, give it 35% transparency and place hillshade below it

Land use

Land use with hillshade

- Map comparison is easily facilitated using the Tabulate Area function in ArcGIS (or any decent raster based GIS)
 - Determines the cross tabulation between two grid themes on a cell-by-cell basis
- Once the tabulations are made, the data is displayed in a simple matrix
 - Map one is the X axis and Map two is the Y axis

Incompatible Cell Sizes

Solution: *Resample* one map (or both?), so layers have same cell size and are aligned

Analysis Mask

 You can specify a processing mask (either a raster or vector layer) to identify cells that will be set to NoData in the output.

A tour of raster functions in ArcGIS

- Raster processing extension to ArcGIS
- It has tools for performing a broad variety of spatial analyses, and is especially well-suited to surface analysis.

Used to

- Create Data
- Identify Spatial Relationships
- Locate Suitable Sites
- Execute sophisticated Path-finding
- Comprehensive modeling and raster analysis capabilities
- Requires separate license from ESRI than ArcGIS

Spatial Analyst capabilities

- Convert vector features (point, line, or polygon) to grids
- Calculate distance from every cell to objects of interest (similar to buffers)
- Generate density maps from point features
- Create continuous surfaces from scattered point features
- Derive contour, slope, aspect maps, and hillshades for these features
- Perform cell-based map and discrete cell-by-cell analyses
- Simultaneously execute Boolean queries and algebraic calculations on multiple raster layers
- Perform neighborhood and zone analysis
- Perform raster classification and display
- Use data from different image formats

Spatial Analyst Toolbar

Quick Check Spatial Analyst

- ArcGIS Desktop Help (local computer)
- ArcGIS Desktop Resource Center (ESRI website)

